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Abstract
A strategy to construct a grid conforming to the boundaries of a prescribed domain by
using transfinite interpolation methods is discussed. A transfinite interpolation procedure
is combined with a B-spline tensor product scheme defined by using suitable control
points. Their choice is performed by taking into account a quality measure parameter
based on the condition number of matrices linked to the covariant metric tensors.

1 Introduction
The algebraic grid generation approach relies on the construction of a coordinate trans-
formation from the computational domain into the physical domain. In particular, this
can be obtained through transfinite interpolating operators allowing us the generation
of grids with boundary conformity. Furthermore, using a Hermite-type transfinite in-
terpolating scheme we can obtain orthogonal grid lines emanating from the boundary.
This can be very important for practical reasons since the grid point distribution in the
immediate neighborhood of the boundaries has a strong influence on the accuracy of the
numerical solution of partial differential equations [5]. Furthermore, in case a domain
decomposition is necessary the orthogonality guarantees smoother grids. In order to ob-
tain a grid with other specified properties, e.g. the control of the shape and position of
the coordinate curves, transfinite interpolating methods can be combined with tensor
product schemes using suitably chosen control points (see for instance [1, 2, 6, 7, 8]).
Even though this type of algebraic method is computationally efficient, to define work-
able meshes, a significant amount of user interaction is required for the selection of the
control points involved in the tensor product. To overcome this drawback, an automatic
strategy for choosing the control points turns out to be desirable. Here, following the
approach first discussed in [1], we present an algebraic Hermite-type transfinite method
to construct a grid interpolating the boundary and its normal derivatives. In fact, given
a "quadrilateral" domain Q C R 2 , a transformation G : R = [0, 1] x [0, 1] -- Ql is defined
as

G(s, t) :- Tp(s, t) + (P1 (D P 2)([Q, 0] - Tp)(s, t) (1.1)

where Tp is a tensor product surface i.e. Tp(s, t) := Z'I Z'- 1 QjyBj,3 (s)Bj,3 (t) with
Bi,3 denoting the usual cubic B-spline, 0 and 0 are boundary curves and (P1 ED P 2) is the
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Boolean sum of Hermite-type blending function linear operators. The set Q = {Qij, i =
1,... , m, j = 1,... , n} is the set of control points.

As already noted, the choice of the control points is a crucial matter. In this paper
we take into account a grid quality measure parameter for their selection. In particular,
the proposed automatic procedure relies on the fact that some grid properties can be
described in terms of the condition number of matrices linked to the covariant metric
tensors [4]. Therefore, the control points are chosen minimizing their condition number.

The outline of this paper is as follows. In Section 2, the transformation (1.1) is given
in detail and its properties are investigated. In Section 3, a way for choosing the control
points is proposed relying on a particular quality measure parameter. Finally, in Section
4 some numerical results are presented to illustrate the features of the proposed strategy.

2 The transformation

In this section the transformation (1.1) is characterized. Let us consider a "quadrilateral"
domain Q C ]R2 such that OQT U = U4 I i , with aQ 1, aQ2, aQ3, aQ4 being the supports of
four regular curves "yi : [0, 1] --* &fi, i = 1,..., 4 taken counterclockwise. Furthermore,
let us suppose that 0Qi n Q•Q3 = 0 and 0Q 2 n mQ4 = 0, with any other intersection
occuring only at the end points of the boundary curves. In particular, the following
compatibility conditions are assumed

'Y1(0) = 74(1), 1 1(1) = 72(0), 12(1) = 73(0), 714(0) = 73(1)

For later convenience, we set 01(s) := xi(s), 02(s) := y3(1 - s) denoting by s the
curve parameter running on [0, 1] and we set 01 (t):= 4(1 - t), 02 (t) := y2 (t) denoting
by t the curve parameter running on [0, 1]. In addition, the components of the q5-curves
and O-curves are denoted by 0', Ov and , 'y respectively.

Next, we define four additional curves by computing the derivatives of the q and
'i-curves, i.e.,

Oi+2(s) = -(( • (s)), (¢T(s))'), i = 1,2,
(2.1)

j+2(t) 1 -('(t)), (O Y(t))'), j = 1, 2,

with C a constant value also depending on the curve orientations and with II 112 the
Euclidean norm. Then, we introduce the linear operators

Pl[¢](s,t) := E4~ p2t¢is ,P[V,] (s,t) := E4=1 aj (s)Oj(t),

(2.2)
PiP2 [qbi'](s,t) :--i2l (o.(t)P 2 [V5](s,ui) + ji+2 (t)OP2[•(s'ui) (

where ul = 0, u2 = 1. The functions aj, i = 1,...,4, are the dilated versions of the
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classical Hermite bases with support on [0, ii] and on [1 - U, 1] being 0 < fi < 1, i.e.

(s) (1 +- 2 -)(1 - _)2 a3(S) S(1 - _9)2 , s E [0,7-],

a2(S) := (3 - 21±=1)( )2, , a 4 (S) (S - 1)(_)+•-i)2 , sG[1--, 1].

(2.3)

The Boolean sum operator (P1 E P2) = P1 + P2 -P 1 P2 provides the blending function
surface

B(s,t) := (P1 E P2 )[ ,4](s,t) = Pi[0](s,t) + P2 [ ](s,t) - PiP2 [ ,4](s,t) . (2.4)

It is known that B satisfies

B(ui, t) = 'i(t) , i = 1,2 ,t) = pi(t) , i = 3,4
B(s,wj) = ¢j(s) , j = 1,2 O = Oj s 3,4 (2.5)

where ul = U3 = 0, u2  U4 = 1 and w, = wa = 0, w2 = w4 1. It is worthwhile to
remark that, as we are dealing with orthogonal grid lines emanating from the boundary
of the domain, the intersecting boundary curves must be also orthogonal. Thus, the
following additional conditions are assumed:

&+2(0) = V)4(Wi), Oi+2(1) = V4(Wi)

Vi+2(0) = ql(ui), Oi+2(1) = 02(Ui) , i = 1,2 . (2.6)
Oi (0) = V)1(wO), O'' (1) = 02 (w0

Now, in order to define a suitable grid, following the approach given in [1], we use
the linear transformation G

G(s,t) := Tp(s,t) + (P1 e P2)([0,'•b] - Tp)(s,t) (2.7)

where Tp(s, t) := Z-L 1 ZjL QJB ,3 (s)Bj,3 (t) with Bi,3 denoting the usual cubic B-
splines with uniform knots. The set Q = {Qij, i = ,...,m, j = 1...,n} is a suitable
set of control points whose definition is discussed in Section 3. It should be noted that
in (2.7) the Boolean sum operator is also acting on a surface Tp(s, t). In this case
(2.2) is used taking the eight boundary curves Tp(0,t), Tp(1,t), Tp(s,0), Tp(s, 1),
OTp(O,t) OTp(l,t) aTp(s,O) aTp(s,1)

Os I Os I Ot ' Ot

It is easy to show that G still satisfies G(ui,t) = el(t) , i = 1, 2, G(u.t) - (t) ,i =

3,4, G(s, wj) = Oj(s) , j = 1,2 and Gj = ¢(s) , j = 3,4. Furthermore, becauseS~at
of the locality of the blending functions aj, i = 1, . . . , 4, the control of the coordinate
lines obtained by means of the evaluation of G over a parameter set in the interior
of the domain is mainly based on the contribution of Tp. This fact and the use of B-
splines ensures the convex-hull property in the interior of the domain. This property is of
importance in numerical grid generation to locate the grid with respect to the position
of control points.
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3 Grid quality measure
It is well known that grid generation techniques sensible to grid quality features are
particularly attractive. Thus, in this section, we discuss a strategy to choose the set Q
of control points based on a suitable grid quality measure parameter.

Given a set of grid points g: {Gij }MjN defining the quadrilateral cells I{0 ij IMijN 1

quality measures can commonly include: grid "skewness", measuring the departure of
Cij from a rectangle, grid "aspect ratio", measuring the departure of Cij from a rhombus
or grid "conformality", measuring the departure of Cij from a square (see for instance
[5]).

Here, as done in [4] for the case of unstructured grids, we define a grid quality measure
taking into account the condition number of particular matrices derived from the grid.
As explained below, somehow this quality parameter measures the departure of Cij from
a square.

The strategy starts with a set Q' of control points obtained by evaluating on a coarse
parameter set S, {(si, ti)1JiNj a Lagrange blending function surface (for detail
related to Lagrange blending function methods we refer, for instance, to [3]) by working
only with the four boundary curves of the given domain. Then, using Q' a first grid is
obtained by evaluating the surface G in (2.7) on a fine parameter set Sf = {(s1, tJ)}iy=
obtaining the grid points

Gij=(Gxj Gyj) = G(si, tj), i =1.,M, j = I,... NJ

The set g is then used to define (M - 1) x (N - 1) bidimensional matrices associated
with the (M - 1) x (N - 1) quadrilateral cells Cij, i = 1,... ,M - 1, j = 1, ,N -1.
These matrices are defined as

SGixlj - Gx . Gx - G,..
Aij G•+'J+~j G"?•3 i'~l~~lG~j' ,i= ,., M -1, j = ,.,N - 1 (3.1)

and their condition number K(Aij) is related to the stretch of the cells. In fact, it is easy
to prove that K(Aij) := IIAjII2 " I A,-'112 = 1 if and only if we are dealing with a cell
Cij where the three points Gi,j+,, Gij, Gi+1 ,j generate half a square [9]. On the other
hand, in order to involve all the grid points in the quality measure it is also convenient
to define the boundary matrices

AINI .( i-+l,N -GN GN-1 Gi,N.--- Gy Zy GyN- Gy ,i=1..,M-,
i+l,N iN G i -1 iN

/M_ := GM Gl GN- - j-1,..., N-1, (3.2)
M,j+1 M,i M-ij M,j

AUM _IN _I := a , M 'JN N-1
M,N - M-1,N M,N M -

so that the boundary points are also taken into account.
Next, we modify the initial set Q' of control points minimizing the following objective
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function

fob = - (-g 1 ENj' K(Aij) + EM-7' K(A(,N_,)+

(3.3)

E-Z l K(A' -Ij) + K(A'•-,N-))

The minimization is done with respect to the control points under suitable constraints
on their coordinates depending on the geometry of the domain Q. This is the only user
interaction required.

Obviously, since ideal inner cells are characterized by an associated matrix Aij having
a condition number close to one, the optimal distribution of the control points should
guarantee minQ fob • 1. On the other hand, minQ fob strongly depends on the geometry
of the domain (for example in case of a squared domain the optimal value is minQ fob = 1
while, in general, this value is not reached).

Summary of the Method

(1) Compute the initial set of control points Q' by means of a Lagrange blending function
method using the four given boundary curves,

(2) Compute the initial grid 9' = {G(si,tj), i = 1. ... ,M, j = 1, ... ,N} with G given
in (2.7) by using the set of control points Qi,

(3) Minimize the objective function (3.3) so defining a new set of control points QJ,
(4) Compute the final grid gf = {G(.i, tj), i = 1 ..... 5/, j = 1..., ,} with G given

in (2.7) by using the set of control points Qf with ! > Al, N > N.

Remark 3.1 We note that, in order to reduce the computational cost of the minimiz-
ation procedure, the integers M and N are chosen less than k and N.

4 Numerical Results
We conclude the paper giving some numerical results testing the properties of the trans-
formation G and showing the performance of the proposed approach.

Three domains are considered. For each of them we present the initial grid obtained
by the transformation G using the initial set of control points Qi and the final grid
obtained using the set of control points Qf resulting from the minimization procedure.
In all the figures the control points are denoted by the symbol "'. The minimization
problem is solved by using a sequential quadratic programming method i.e. by using the
routine constr of the Optimization toolbox of the Matlab package. In the minimization
procedure, the constraints on the control points Qf are chosen so that some geometric
properties of the domain, such as symmetry and convexity, are preserved. Furthermore,
in all the examples M and N are equal to M! and to N. The values of the objective
function before the minimization (fib) and after the minimization (foýb) are also given in
the figure captions.

The first and the second test display a "waterway" grid and a H-shaped grid with
their control points before and after the minimization procedure. The effectiveness of
the method is evident.



An automatic control point choice 7

0.7 0.7

0.2 0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.0 0 0 .3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 1. Initial grid (left) and final grid (right), fo = 3.74, fJ6 = 1.65.
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FIG. 2. Initial grid (left) and final grid (right), fiob = 1.45, f1b = 1.22.
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FIG. 2. Initial grid (left) and final grid (right), foi , = 1.80/.3, fof6 = 1.202.20
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Figure 3 shows a grid composed of six sub-grids, obtained via a domain decompos-
ition approach. In this case, the Hermite-type interpolation method guarantees a C1
connection among the patches. Here, the two values of fýb and fb in the figure captions
refer to the "horizontal" and "slanted" grids, respectively.
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